Hartung-Gorre Verlag

Inh.: Dr. Renate Gorre

D-78465 Konstanz

Fon: +49 (0)7533 97227 Fax: +49 (0)7533 97228
eMail: verlag@hartung-gorre.de











Buğra Kabil

Analysis of Liquid-Vapor

Interfaces and Periodic Waves in

Dynamical Lattice Systems

Konstanz 2016; 148 pages, EUR 64,00.

ISBN 978-3-86628-563-7



The aim of this thesis is the analytical investigation of liquid-vapor interfaces and periodic traveling waves in dynamical lattice systems. This work consists of two parts. The first part is the main part of this work and deals with the analysis of the stability and the persistence of liquid-vapor interfaces in a multidimensional Van der Waals fluid. The subsonic phase boundary is considered as a sharp free boundary connecting liquid and vapor bulk phase dynamics given by the isothermal Euler equations. Surface tension and configurational forces in the form of a kinetic relation determine the evolution of the interface. The system of equations and trace conditions are linearized so that we obtain a generalized hyperbolic initial boundary value problem with higher-order boundary conditions. Linearization about a non-constant reference state results in a linear system with variable coefficients. Stability and global existence theorems for the linearized system with constant coefficients and also for the variable system are shown. By using the results of these linearized systems, an iteration scheme yields the local existence of solutions to the fully nonlinear problem which is stated as the main result of this part in Theorem 5.4. The second part of this thesis concerns the analysis of periodic traveling waves in dynamical lattice systems. Three classes of nonlinear lattice systems resulting from spatial discretization of partial differential equations are considered. We analyze the stability of periodic traveling waves in these lattice systems. First, we derive the so-called modulated equations (or Whitham equations). Then, we investigate the spectral stability in a more analytical framework. The major issue of this part is to give the link between the modulated equations to the stability at the spectral level. We receive that modulation theory is indeed related to spectral stability of periodic traveling waves. In particular, we obtain that the characteristic speeds of the modulated equations have to be real. The main result is given for the reaction-diffusion type lattice system and stated in Theorem 5.1.



Keywords: liquid-vapor interface, initial boundary value problem, hyperbolic problem, local existence, undercompressive shock, surface tension, kinetic relation, Kreiss-Lopatinskii condition


Buchbestellungen in Ihrer Buchhandlung, bei www.amazon.de

oder direkt:


Hartung-Gorre Verlag

D-78465  Konstanz

Telefon: +49 (0) 7533 97227

Telefax: +49 (0) 7533 97228

eMail: verlag@hartung-gorre.de