Series in Distributed Computing
edited by Roger Wattenhofer
Vol. 16

Beschreibung: Beschreibung: C:\Dokumente und Einstellungen\HP_Besitzer\Eigene Dateien\Verlag\U1\3866284136.jpeg

Philipp Sommer

Wireless Embedded Systems:

Time, Location, and Applications

 

1st edition /1. Aufl. 2012, 168 pages/Seiten, 64,00.
ISBN 3-86628-413-6 and 978-3-86628-413-5

 

 

Wireless embedded systems combine sensors and actuators with processing, storage, and communication capabilities. Networks of small, lowpower wireless devices, so called nodes, offer the potential to collect observations of the physical world at unprecedented fidelity and scale. Time and location are of fundamental importance in the context of wireless sensor networks. Accurate time and location information are crucial for many tasks, e.g., sensor data fusion, spatiotemporal coordination, lowpower operation, and wireless medium access.

 

In the first part of this volume, we study the problem of time synchronization. As clock sources in wireless embedded systems often exhibit severe drift, and message exchange is subject to a delay, sophisticated algorithms are mandatory to keep clocks in synchronization. Existing time synchronization algorithms are designed to provide networkwide synchronization, i.e., between arbitrary nodes in the network. However, large synchronization errors may become visible with increasing distance from a reference node, but also closeby nodes in a network may be synchronized poorly. To address these issues, we propose two clock synchronization protocols: the Gradient Time Synchronization Protocol to achieve local synchronization, and the PulseSync protocol for global synchronization. We evaluate the performance of both protocols by simulations and experiments in different wireless sensor network testbeds.

 

The second part of this volume is dedicated to the question how we can provide accurate location information in the context of wireless embedded systems. We present the SpiderBat platform, which provides node localization for sensor nodes using ultrasound pulses. By employing multiple transmitters and receivers, we can estimate the distance and angle between neighboring nodes. Using both distance and angle information allows to localize nodes with an accuracy of a few centimeters, even in sparse networks where other approaches fail.

 

In the third part, we discuss design considerations for the architecture of future wireless embedded systems, as they have evolved from pure research tools to ubiquitous smart things. To this end, we present a resourceoriented approach to facilitate the connection between heterogeneous devices and services, and a novel wearable sensor platform that utilizes mobile phones for personalized sensing applications.

 

About the author:

 

Philipp Sommer received his degree in electrical engineering and information technology from ETH Zurich, Switzerland, in 2007. In the same year he joined the Distributed Computing Group of Professor Roger Wattenhofer at ETH Zurich as a Ph.D. student and research assistant. In 2011 he received his Ph.D. degree for his work on wireless embedded systems.

 

Keywords: Wireless Embedded Systems

 

Direkt bestellen bei / to order directly from: Hartung.Gorre@t-online.de
Series in Distributed Computing in http://www.hartung-gorre.de

Direkt bestellen bei / to order directly from: Hartung.Gorre@t-online.de

Hartung-Gorre Verlag

Hartung-Gorre Verlag / D-78465 Konstanz / Germany

Telefon: +49 (0) 7533 97227 Telefax: +49 (0) 7533 97228
http://www.hartung-gorre.de eMail: verlag@hartung-gorre.de