Hartung-Gorre Verlag

Inh.: Dr. Renate Gorre

D-78465 Konstanz

Fon: +49 (0)7533 97227

Fax: +49 (0)7533 97228



Scientific Reports on Micro and Nanosystems

edited by Christofer Hierold

Vol. 26





Silke Christina Wouters


New Type of Three-Axis Hall Sensor

Designed for High-Accuracy

Magnetic Field Measurements


1st Edition 2017. XXII, 166 pages. € 64,00.
ISBN 978-3-86628-593-4


Hall sensors (1D and 3D) are routinely used in magnetic field measurements of beamline magnets, insertion devices, and detector magnets at research institutes and accelerator facilities. These measurements are a high-end application of Hall sensors, demanding high accuracies up to 10-4 (at 1 T level) or even beyond. While this is consistently achieved with uniaxial (1D) Hall sensors in a single-component magnetic field volume, the measurement of all three components of a magnetic field, simultaneously to high accuracy with Hall sensors, remains a challenge. None of the commercially available three-axis (3D) Hall sensors proclaims similar measurement accuracy to 1D Hall sensors. Currently, 3D Hallsensors suffer from either, or a combination, of the following: large spatial distribution between sensors’ active areas; high signal noise; cross-sensitivity among measurement axes due to angular errors or due the planar Hall effect (PHE); the inability to measure at a single point in space and time.

A new type of three-axis Hall sensor is proposed, consisting of three pairs of uniaxial Hall sensors in a very small active volume. Due to its unique configuration, the new sensor can address current three-axis Hall sensor limitations — it provides: a high spatial resolution of 30 μm × 30 μm × 1 μm for each field component; the full field vector measurements practically at a single point in space and time; and compensation of the planar Hall effect as well as loop-induced voltages by the pairs of 1D Hall sensors. The feasibility of the proposed sensor has been proven in a prototype with an active volume as small as 200 μm × 200 μm × 200 μm and outer dimensions of 4 mm × 4 mm × 4 mm. Its design, fabrication, 3D characterization and calibration is reported on.

Keywords: Hall sensor; three-axis Hall sensor; 3D Hall sensor; magnetic field sensor; Hall generator; magnetic field vector; Hall effect; planar Hall effect; calibration.

Scientific Reports on Micro and Nanosystems

Direkt bestellen bei / to order directly from:

Hartung-Gorre Verlag / D-78465 Konstanz / Germany

Telefon: +49 (0) 7533 97227 Telefax: +49 (0) 7533 97228

eMail: verlag@hartung-gorre.de